Mlflow with Helm and serve Train Model on kubernetes

Dounpct
2 min readAug 6, 2023

--

Part 6: Keep Model in Mlflow remote Cluster

After we have Mlflow Tracking on GKE Cluster then we will train ML and keep it to Mlflow Tracking on GKE Cluster.

  • Add New Experiments: soc-ml-default
  • Open Train.py
  • In terminal export
export MLFLOW_TRACKING_URI=http://mlflow-tracking.domain.com
export MLFLOW_TRACKING_USERNAME=user
export MLFLOW_TRACKING_PASSWORD=pwd
  • Run Train.py
  • Check On Mlflow Tracking Server
  • Have fun !!!

— — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Credit : TrueDigitalGroup

— — — — — — — — — — — — — — — — — — — — — — — — — — — — —

--

--

Dounpct
Dounpct

Written by Dounpct

I work for TrueDigitalGroup in DevOps x Automation Team

No responses yet