Part 1: Install Mlflow on Local Machine
Part 2: Train example model and keep in Mlflow Local Machine
Part 3: Expose example api on Local Machine
Part 4: API Transform for Model API
Part 5: Install Mlflow on GKE Cluster with helm
Part 6: Keep Model in Mlflow remote Cluster
Part 7: Serve Model API on Cluster
After we have Mlflow Tracking on GKE Cluster then we will train ML and keep it to Mlflow Tracking on GKE Cluster.
- Open Train example model from Part2: Train example model and keep in Mlflow Local Machine
- Code : https://github.com/dounpct/soc-ml-api
- Open mlflow tracking server on GKE
- Add New Experiments: soc-ml-default
- Open Train.py
- In terminal export
export MLFLOW_TRACKING_URI=http://mlflow-tracking.domain.com
export MLFLOW_TRACKING_USERNAME=user
export MLFLOW_TRACKING_PASSWORD=pwd
- Run Train.py
- Check On Mlflow Tracking Server
- Have fun !!!
— — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Credit : TrueDigitalGroup
— — — — — — — — — — — — — — — — — — — — — — — — — — — — —